Remote Display User Manual
Contents:
Introduction - Features ... 3
Hardware Overview .. 4
Quick-Start Guide ... 5
Android Application Operation ... 6
 Launching and Connecting ... 6
 Main Display ... 7
 Configuring Channels ... 8
 Quadrature Devices .. 8
 Digimatic Devices ... 9
External Data Connection ... 9
 PC USB Connection ... 9
 RS-232 Serial Connection ... 12
 Communication Protocol ... 12
 Parameter List .. 13
 File Transfer from Tablet ... 14
 Transfer via SD Card (microSD cards can be purchased from your local computer store) . 14
 Transfer via USB Connection ... 16
 Transfer to Cloud Storage ... 16
Supplemental Information ... 18
 Digimatic Interface ... 18
 Signal Timing ... 18
 Data Ordering .. 19
 Digimatic Data Format ... 20
 Quadrature Signal Format ... 21
 Installing Unsigned Drivers in Windows 8 .. 22
Introduction

The Remote Display is a richly-featured measurement system that allows for the simultaneous connection of up to four gages and displays their current measurements on a connected Android tablet. In addition, the Remote Display can connect to up to two external data consumers (desktop computer, laptop, PLC, or any generic serial device) over RS-232 and USB.

The Remote Display has been designed to work with nearly any gage that outputs data in Digimatic format. In addition, devices that output raw quadrature can be used as well.

As a standalone measurement system, the Remote Display provides a very intuitive and user-friendly way to configure and monitor several gages at once. Connecting the Remote Display to a computer or other serial device makes data collection and statistical process control (SPC) simple and easy.

Features

- Simultaneous connection of up to four measurement instruments.
- Both, Digimatic or raw quadrature devices supported on all four ports. Nearly any Digimatic gage, regardless of manufacturer, is supported.
- User-friendly and intuitive Android application for easy process monitoring. The addition of a global footswitch makes triggering data updates easy.
- External USB and RS-232 connections facilitate simple SPC.
- Wide supply voltage range (9V to 24V).
- USB power can be used instead of an external AC adapter.
- High quality, low profile enclosure and tablet stand.
- Bright LED power indication.
Hardware Overview

The front panel of the Remote Display Mux Box contains the connectors for up to four gage channels. Each 10-pin connector supports both quadrature probes and any gage that supports Digimatic communications.

- Global send footswitch capable for triggering updates on all connected channels.
- Four 10-pin gage channel connectors.

The rear panel of the Remote Display Mux Box houses the power and communication interface connectors, as well as a power indicator LED.

1. USB Type A port for connecting the supplied Android tablet.
2. USB Type B port for connection to a computer or laptop.
3. RS-232 port for connection to external data consumers.
4. Power LED indicator.
5. 12V, 1.5A center-positive power jack.
Quick-Start Guide

The following instructions will demonstrate how to operate the Remote Display with one Digimatic indicator and one quadrature Probe.

1. Plug in the supplied power adapter to the Remote Display Mux Box (item 5 on page 4). The red LED on the rear panel will light up.
2. Power up the supplied Android tablet. Press and hold the On Button (approx. 5 seconds) until HP logo appears on screen and then release the On button. The display will take approx. 30 seconds to startup. Using the supplied USB Micro to USB Type-A cable (item 1 on page 4, Back Panel), connect the Android tablet to the Remote Display Mux Box. *Do not connect the tablet to the USB Type-B connector, as this will not function properly!*
3. The Remote Display application should automatically start on the Android tablet. If it does not start, unplug the tablet from the gage, wait a few seconds, and then reconnect.
4. Plug a quadrature probe into channel 1. The Android application defaults all channels to quadrature mode, so the gage should start reporting counts immediately after connecting. Confirm this by moving the spindle of the probe.
5. Plug the device (with Digimatic output) into channel 2.

To configure channel 2 for Digimatic communication mode, long-press on the CH 02. Channel 2 Properties page will appear on the tablet. Scroll down to the setting for “Gage Type,” then make sure *Digimatic* is selected. Press the back button on the tablet to return to the main display.

6. For all Digimatic devices, data can be manually requested by pressing the “Request” button for the associated channel. Alternatively, data can be automatically updated at constant intervals using the Auto Request and Logging feature. To set an automatic update interval (the Remote Display will not update the Digimatic Data unless requested):
 a. Long-press on the appropriate channel (CH 01, CH 02, CH 03, or CH 04)
 b. Scroll down to the options titled “Auto Request and Logging / Automatic Request, and Request Interval”
 c. Select “Automatic Request” and the desired Request Interval rate (fastest rates may not be supported by all devices)

Note that the “Request” button will no longer be visible for that channel. It is not possible to manually request while the automatic function is active.
Android Application Operation

Launching and Connecting

The Remote Display Android application will automatically launch and connect when the tablet is connected to the Remote Display Mux Box. Alternatively, the app can be launched by clicking on the Remote Display icon from the App Drawer.

After connecting the Android tablet to the Remote Display Mux Box and launching the app, the system will establish communication. The connection status text at the top-left corner the application will read “Remote Display” as seen below.

If the device shows a status of “Disconnected” or “Error,” ensure that the Remote Display is powered using the external AC adaptor and that the Android tablet is connected to the USB-A plug on the back of the display. Refer to Hardware Overview section for more information about identifying the connectors.

Main Display

The main screen of the Remote Display application is shown below. As channels are enabled and disabled, the screen will update dynamically to maximize the amount of screen area available. This example shows two connected devices (channels 1 is a Quadrature “QUAD” instrument and channel 2 is a Digimatic “DIGI” instrument. If Digimatic is chosen as “Gage Type” and no device is connected to that channel, then TIMEOUT will appear on the display. The primary features of the main screen are illustrated in the list below.
1. **Clear Button (quadrature devices only)** – Press and Hold the Clear Button to zero the displayed measurement for that channel.

2. **Hold Button (quadrature devices only)** – Press Hold to toggle on or off hold function. To enable/disable Hold function and configure (Min, Max, or Freeze) see setup functions under Gage Functions.

3. **Log Data Button** – Press to record current measurement

4. **Request Button (Digimatic devices only)** – Press to request reading from selected channel

5. **Clear All Button** – Press to zero all quadrature channels

6. **Request All Button** – Press to request reading from all Digimatic channels

7. **Log All Button** – Press to record current measurement for all channels

Configuring Channels

Regardless of the connected gage type, all channels have a set of common settings. To access the settings for a given channel, swipe from the left side of the screen towards the center of the tablet.

Alternatively, press the back button on the tablet's soft key menu, and then click on the name of the appropriate channel.

Apart from the type of connected device (Quadrature or Digimatic) there are several settings that are always available. These settings are summarized in the following list:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Enabled</td>
<td>Enables/Disables channel. Disabling a channel will hide it from the main display.</td>
</tr>
<tr>
<td>Gage Type</td>
<td>Selects the channel function between Quadrature and Digimatic modes.</td>
</tr>
<tr>
<td>Unit Type</td>
<td>Selects measurement unit between Inch, Millimeter, and Hidden.</td>
</tr>
<tr>
<td>Mode</td>
<td>Selects indication mode between Incremental (default), Absolute, and Total Indicated Runout (TIR). TIR is only available for Quadrature Devices.</td>
</tr>
<tr>
<td>Absolute Offset</td>
<td>Entry of absolute offset (ABS mode only).</td>
</tr>
<tr>
<td>Travel Direction</td>
<td>Selects between forward and reverse travel direction.</td>
</tr>
<tr>
<td>Tolerance</td>
<td>Enables/Disables tolerance mode. If this mode is enabled, the analog indication for this channel will turn red when the measurement falls outside of the specified bounds.</td>
</tr>
<tr>
<td>High Tolerance</td>
<td>Sets the maximum allowable high tolerance value for this channel.</td>
</tr>
<tr>
<td>Low Tolerance</td>
<td>Sets the maximum allowable low tolerance value for this channel.</td>
</tr>
<tr>
<td>Ratio Mode</td>
<td>Enabling Ratio mode will scale the current value by the value of the “Ratio Value” setting.</td>
</tr>
<tr>
<td>Ratio Value</td>
<td>Scale multiplier for current gage measurement.</td>
</tr>
<tr>
<td>Automatic Log</td>
<td>Enables automatic data logging at an interval.</td>
</tr>
<tr>
<td>Log Interval (s)</td>
<td>Sets the logging interval if Automatic Log is enabled.</td>
</tr>
<tr>
<td>Show Analog Scale</td>
<td>Enables display of the analog scale in addition to the readout value.</td>
</tr>
<tr>
<td>Analog Scale</td>
<td>Selects the maximum value to display on the analog scale readout.</td>
</tr>
<tr>
<td>Show Leading Zero</td>
<td>Enables/Disables leading zeros on current measurement.</td>
</tr>
</tbody>
</table>
Quadrature Devices

By default, channels are set up in quadrature mode, which provides a real-time display of the current indicator’s measurement. The following settings are only available for quadrature channels:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder Resolution</td>
<td>Set the Encoder Resolution of the device (for example .00005” or .0001”).</td>
</tr>
<tr>
<td>Encoder Unit Type</td>
<td>Selects the unit type of the encoder glass scale (Inch or Metric).</td>
</tr>
<tr>
<td>Hold</td>
<td>Turns on/off Hold mode, under “Gage Functions”, for this channel. This setting can be accessed by pressing the “Hold” button for the current channel on the main screen.</td>
</tr>
<tr>
<td>Hold Mode</td>
<td>If Hold is enabled, this setting selects between the available Hold modes: Min, Max, and Freeze. Max, and Freeze.</td>
</tr>
<tr>
<td>Resolution</td>
<td>Sets the display resolution of the remote display.</td>
</tr>
<tr>
<td>Show Min/Max</td>
<td>Enables display of min and max readings in addition to the readout value.</td>
</tr>
</tbody>
</table>

Digimatic Devices

Channels can also be set up to read output from Digimatic devices. These devices need to be polled for their current data. The following settings are only available for Digimatic channels:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log on Request</td>
<td>If enabled, a time stamped entry will be made to the data log every time the data is refreshed manually.</td>
</tr>
<tr>
<td>Auto Request</td>
<td>Enables/Disables automatic data refresh.</td>
</tr>
<tr>
<td>Request Interval (s)</td>
<td>Sets the data update interval if Auto Request is enabled.</td>
</tr>
</tbody>
</table>

External Data Connection

The remote display supports data connections over both USB and RS-232 communications.

PC USB Connection

The device may work with older operating systems but only Windows 7 and 8 are supported by the manufacturer. When connecting the Remote Display to a host computer over USB, the Remote Display will function as a Virtual COM Port (VCP), which emulates a standard RS-232 serial connection. To use this feature, follow these steps to establish communication between the display and the host PC.

(These instructions assume that host computer is running Windows 7):

1. Install the USB drivers that were bundled with the Remote Display. Be sure to install the correct drivers for the version of Windows (32-bit or 64-bit) that you are installing on. This can be determined by opening the System properties (Control Panel ->
2. Power the Remote Display Mux Box using the supplied AC adapter. The red LED on the rear panel will light up to indicate the device has turned on.

3. Connect the Remote Display Mux Box to the host computer by plugging a USB cable between the USB Type B connector on the rear panel of the Remote Display and a USB port on the host computer (this cable can be purchased at your local computer store).

4. If the drivers have been installed correctly, Windows will recognize the Remote Display and will show a notification that the device has been connected.

Now that the PC USB has been properly established, the VCP can be opened either by data logging software or manually through a terminal client.

Most terminal clients that support standard serial communications will be compatible with the Remote Display. One free application, PuTTY, is the recommended application to use with the Remote Display. You can download it using the following link:

http://www.chiark.greenend.org.uk/~sgtatham/putty/

To install PuTTY, follow this procedure:

1. Once on the Putty website, click on Download PuTTY!
2. Scroll down to MSI (Windows Installer). Flick on , the appropriate 32, or 64-bit version of the .msi program, and install the program.
3. When the installer finishes downloading, double-click on it to start. Follow the prompts to complete the installation.

To open the VCP and query the Remote Display for the current gage reading on Channel One, follow these steps. This guide will assume the user is using PuTTY to make the connection.

1. Open the terminal client and under “Connection type” check the circle marked “Serial”.
2. Enter the COM port number in the “Serial Line” box. If this is not known, it can be found in the Device Manager:
 a. Press the Windows Start button. (or press the Windows key on the keyboard).
 b. Type “Device Manager” and then press enter.
 c. Expand “Ports (COM & LPT)”.
 d. The Remote Display will appear as “USB Measurement Device”, or, “Virtual COM Port (CDC) (COMnnn)” where “nnn” is the port number.
3. Click on Connection -> Serial on the left sidebar, and make sure the connection parameters are set as shown below (Enter COM Port number if different from COM1)

4. Click “Open” to connect to the Remote Display. Successful connection will open a blank terminal window.

5. To test the connection, press the “Enter” key. The message “No such command!” should appear on the screen. If nothing is displayed on the terminal screen, disconnect the device, cycle power, and then repeat this procedure.

6. Refer to the Communication Protocol section below for a list of available commands.
RS-232 Serial Connection

The Remote Display supports an RS-232 connection to data consumers, such as a computer or PLC. To connect the Remote Display to an external RS-232 device, use the following procedure:

1. Find the female RS-232 connector on the rear panel of the Remote Display Mux Box.
2. Using a shielded RS-232 cable, connect the Mux Box to the external data consumer. Depending on the device and cable configuration, it may be necessary to use a female-to-male gender changer. They can be used freely without any impact on the Remote Display functionality.
3. Use the following RS-232 settings on the external device to establish communication with the Remote Display Mux Box.

- **Speed (baud)**: 9600
- **Data Bits**: 8
- **Bits Stop**: 1
- **Bits Parity**: None
- **Flow Control**: XON/XOFF

4. Refer to the Communication Protocol section below for a list of available commands. Many modern computers use USB ports in lieu of RS-232 ports. The Remote Display can still communicate to these devices over RS-232 by using a Serial-to-USB converter. There are many such devices available. When searching, ensure that the device is compatible with the Operating System version that is being used on the computer.

Communication Protocol

The following list summarizes the serial commands available for exchanging data with the Remote Display Mux Box. These commands apply to both the RS-232 and PC USB communication modes. Type: “Enter” or “Return” after command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Print current gage readings for all channels</td>
</tr>
<tr>
<td>N :A</td>
<td>Print current gage reading for Channel “N”. ex: 1:A for channel 1</td>
</tr>
<tr>
<td>D</td>
<td>Print data packet* for all channels</td>
</tr>
<tr>
<td>N :D</td>
<td>Print data packet* for channel “N”</td>
</tr>
<tr>
<td>R</td>
<td>Request a measurement update on all Digimatic channels on Tablet</td>
</tr>
<tr>
<td>N :R</td>
<td>Request a measurement update for channel “N” on Tablet</td>
</tr>
<tr>
<td>C</td>
<td>Clear gage measurements for all channels (quadrature only)</td>
</tr>
<tr>
<td>N :C</td>
<td>Clear gage measurement for channel “N” (quadrature only)</td>
</tr>
<tr>
<td>rstErr</td>
<td>Resets global errors</td>
</tr>
<tr>
<td>N :pXXX=?</td>
<td>Get the value of configuration parameter “XXX” for channel “N”</td>
</tr>
<tr>
<td>N :pXXX=<new value></td>
<td>Set the value of parameter “XXX” for channel “N” to “<new value>”</td>
</tr>
<tr>
<td>Save</td>
<td>Saves any modified parameters to retentive flash</td>
</tr>
<tr>
<td>Help</td>
<td>Show help text and command list</td>
</tr>
</tbody>
</table>

* Data Packet format: Channel: Reading: Analog Scale: New Data: Max: Min

Note that the Analog Scale field has a maximum value of 1000.
Note N = channel number
Parameter List

The following list summarizes the configuration parameters available for configuring each device channel. When editing these values over RS-232 and/or USB, make sure to hit the Save command to commit the values, otherwise, they will be reset if the Remote Display is powered down.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>p003</td>
<td>Channel Enabled</td>
<td>0 – No 1 – Yes</td>
</tr>
<tr>
<td>p004</td>
<td>Units</td>
<td>1 – Inches 2 – Millimeters 3 – Hidden</td>
</tr>
<tr>
<td>p005</td>
<td>Measurement Mode</td>
<td>0 – Absolute (ABS) 1 – Total Indicated Runout (TIR) 2 – Incremental (INCR)</td>
</tr>
<tr>
<td>p006</td>
<td>Travel Direction</td>
<td>0 – Normal 1 – Reverse</td>
</tr>
<tr>
<td>p007</td>
<td>Hold Enabled</td>
<td>0 – Disabled 1 – Enabled</td>
</tr>
<tr>
<td>p008</td>
<td>Hold Mode</td>
<td>0 – Freeze 1 – Min 2 – Max</td>
</tr>
<tr>
<td>p009</td>
<td>Tolerance Enable</td>
<td>0 – Disabled 1 – Enabled</td>
</tr>
<tr>
<td>p910</td>
<td>Upper Tolerance</td>
<td>Enter value without decimal Ex: 012345 = 0.12345</td>
</tr>
<tr>
<td>p911</td>
<td>Lower Tolerance</td>
<td>Enter value without decimal Ex: 012345 = 0.12345</td>
</tr>
<tr>
<td>p914</td>
<td>Absolute Offset</td>
<td>Enter value without decimal Ex: 012345 = 0.12345</td>
</tr>
<tr>
<td>p016</td>
<td>Gage Type</td>
<td>0 – Digimatic 1 – Encoder</td>
</tr>
<tr>
<td>p017</td>
<td>Glass Type</td>
<td>1 – Inches 2 – Millimeters</td>
</tr>
<tr>
<td>p018</td>
<td>Base Multiplier (one encoder tick)</td>
<td>5 – 0.00005” 10 – 0.001” 100 – 0.001mm 200 – 0.002 mm</td>
</tr>
<tr>
<td>p019</td>
<td>Ratio Mode Enabled</td>
<td>0 – Disabled 1 – Enabled</td>
</tr>
<tr>
<td>p020</td>
<td>Ratio Multiplier</td>
<td>Enter value without decimal Ex: 012345 = 0.12345</td>
</tr>
<tr>
<td>p921</td>
<td>Analog Scale</td>
<td>Enter value without decimal Ex: 012345 = 0.12345</td>
</tr>
<tr>
<td>p023</td>
<td>Gage Resolution</td>
<td>1 – 0.001” or 0.02mm 2 – 0.0005” or 0.01mm 3 – 0.0001” or 0.002mm 4 – 0.00005” or 0.001mm</td>
</tr>
<tr>
<td>p024</td>
<td>Leading Zero</td>
<td>0 – Disabled 1 – Enabled</td>
</tr>
</tbody>
</table>
File Transfer from Tablet

There are three common ways to transfer stored data (.csv files) to other devices: transferring via the microSD card; transfer via USB connection; and transfer using email.

Transfer via SD Card (microSD cards can be purchased from your local computer store)

Files can be saved to the external microSD Card and transferred to any PC with a microSD card reader. To copy logging data to the card from within the Remote Display Android application, swipe right from the left side of the screen (or press the back button) to show the application menu, and click “View Data Logs.”

From this screen, click the “Copy to SD” button. The application will automatically transfer the logging data to a folder on the external microSD card.
Remove the card from the slot on the tablet (location shown below) and move it to the PC’s card reader to access the files.

Transfer via USB Connection

Files can be copied directly from the tablet to a PC over USB. To do this, connect the tablet to a PC over USB and wait for Windows to install the driver for the tablet. Once the drivers are installed successfully, open a new Explorer window and navigate to My Computer. The tablet should appear under the list of drives and devices, as shown below.

The data logs for the Remote Display application will be found in the following location: Internal Storage\Logs
Transfer to Cloud Storage

If the tablet is connected to the internet over WiFi, data logs can be sent directly to cloud storage services like Google Drive, SkyDrive, and DropBox. To do this, go to the Remote Display application and return to the View Data Logs screen as shown previously. Click the Edit button and choose the channel number of the data log that you want to transfer.

This will open the Spreadsheet application. Click “Save As” on the top header (if this is not displayed, click on the “S” button in the top left side of the application to show it), and then click on “Cloud Storage” at the top of the dialog box.
Find the preferred cloud storage service and follow the instructions to save the logs.
Supplemental Information

Digimatic Interface

The following describes the standard 10-pin Digimatic connector pinout.

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Signal Ground</td>
</tr>
<tr>
<td>2</td>
<td>DATA 1</td>
<td>Outlet data</td>
</tr>
<tr>
<td>3</td>
<td>CLOCK</td>
<td>Clock</td>
</tr>
<tr>
<td>4</td>
<td>RDY (READY)</td>
<td>Data transmission ready</td>
</tr>
<tr>
<td>5</td>
<td>REQUEST</td>
<td>Data output request from external device</td>
</tr>
<tr>
<td>6</td>
<td>NC</td>
<td>------</td>
</tr>
<tr>
<td>7</td>
<td>NC</td>
<td>------</td>
</tr>
<tr>
<td>8</td>
<td>+5V</td>
<td>5V Input terminal</td>
</tr>
<tr>
<td>9</td>
<td>+5V</td>
<td>5V Input terminal</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>Frame ground</td>
</tr>
</tbody>
</table>
Signal Timing

Figure 1-1 shows a timing chart for the case where the host device triggers a data transfer by asserting the active-low request signal (/REQ). The gage then sends data (the DATA signal) that is clocked by the CK line. In this case, the data ready (RDY) line is not applicable.

![Figure 1-1](image1)

Figure 1-2 shows a timing chart for the case where the gage asserts its active-low data ready signal (/RDY) to indicate that a new gage measurement is available. This triggers a data transfer that is initiated by the host device.

![Figure 1-2](image2)

Data Ordering
When the \(\overline{REO} \) is active (low level), data is serially output from the Digimatic measuring instrument. The measurement data is comprised of 13 digits (fixed length), numbered \(D_1 \) to \(D_{13} \), each of which is 4 bits wide. Each digit is transmitted and received in the order of LSB to MSB (data format is described later). Each bit of data is received while the CK is active (low level), in accordance with positive logic (0 = low level, 1 = high level).

When \(\overline{RDY} \) signal becomes active (low level), data input will be performed. However, an \(\overline{RDY} \) signal can be often controlled simply by a switch contacting. Take appropriate measures to prevent malfunctions caused by a chattering switch.
Digimatic Data Format

Data type
0 : Entry data : Digimatic Micrometer MD-M only
1 : Number of samples
2 : MAX data
3 : MIN data
4 : X data
5 : σ data
6 : MAX, HOLD data : Digimatic Indicator ID-M, Linear Gage LG-D only
7 : MIN, HOLD data
8 to E: Undefined
F : NORMAL data : Types other than the ones listed above

Entry number
3-digit BCD, MSD = D2, LSD = D4 (D1=0)
ALL F (D1=0)

Sign
0 : "+"
8 : "-"

Numerical data
6-digit BCD, MSD = D6, LSD = D11 (D1=1)
D6 to 8 = F, D9 to 11 = 3-digit BCD (D1=1)

Decimal point position
0 : D6 D7 D8 D9 D10 D11
1 : D6 D7 D8 D9 D10 D11
2 : D6 D7 D8 D9 D10 D11
3 : D6 D7 D8 D10 D11
4 : D6 D7 D8 D9 D10 D11
5 : D6 D7 D8 D9 D10 D11

Unit and tolerance judgment result (8 to F shows no unit)
0 : M M = mm
1 : I I = inch
2 : M (+NG)
3 : M (GO)
4 : M (-NG)
5 : I (+NG)
6 : I (GO)
7 : I (-NG)
Quadrature Signal Format

The following diagram and schematic describe the format of quadrature data that the Remote Display is expecting to receive. Failure to meet these specifications will not guarantee proper functionality of quadrature devices.

Expected Quadrature Signal:

Quadrature Conditioning Circuit

The following circuit is used internally in the Remote Display to condition the quadrature signals for decoding. Ensure that any quadrature devices connected to the Remote Display are compatible with the electrical specifications of this circuit.
Installing Unsigned Drivers in Windows 8

Users of Windows 8 or Windows 8.1 may experience difficulty installing unsigned drivers. The following procedure can be used to install these drivers.

1. From the desktop, move the cursor to the right side of the screen to show the Charms menu. Click on “Settings.”
Click on “Change PC Settings” at the bottom to open the control panel.

Select “Update & recovery” from the list of options
4. Select “Recovery” from the resulting menu and then click on the “Restart now” button under the Advanced Startup heading.

5. From this menu, click on “Troubleshoot”
6. Select “Advanced Options” from the Troubleshoot menu

7. Select “Startup Settings”
8. On the next screen, click “Restart” to reboot the PC in recovery mode. Once the computer reboots, the following menu will be shown. Press F7 on the keyboard to select “Disable driver signature enforcement”

9. When Windows loads, it will not look different than usual, but it will be possible to install unsigned drivers. Follow the typical driver installation process to install the drivers. Be sure to reboot the computer normally immediately after installing the drivers.

END